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The translational and rotational symmetries of molecular geometrical derivatives
are discussed. Simple formulas are presented for calculating the full set of Carte-
sian derivatives from a set of independent derivatives. The formulas are general
and can be applied to any property to any order.
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Quantum chemical ab initio methods have in re-,

cent years emerged as a reliable technique for
investigating gas-phase molecular structures. The
calculation of geometrical derivatives plays an
important role in such studies. These derivatives
are needed not only to determine equilibrium
geometries, but also to calculate various proper-
ties such as vibrational frequencies and inten-
sities.

For technical reasons geometrical derivatives
are calculated with respect to Cartesian displace-
ments of the nuclei. Because of translational and
rotational symmetries, such derivatives are not
independent. For example, in an isolated mole-
cule only 3N—m Cartesian forces are independ-
ent [N is the number of atoms and m is the
number of translational and rotational degrees of
freedom (5 or 6)]. The remaining forces can be
determined from the translational and rotational
invariance of the energy. This has two useful
applications. First, the number of derivatives that
must be calculated ab initio may be reduced. This
is especially useful for small molecules. Alterna-
tively, one may calculate all derivatives ab initio
and simply use translational and rotational sym-
metries as an easy check on the calculation.

The problem of calculating derivatives from
symmetry considerations may appear rather triv-
ial, especially in comparison with the complexity
of ab initio calculations. Nevertheless, most dis-
cussions so far have been restricted to special
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low-order cases.'™ As higher derivatives of vari-
ous properties are being addressed, it becomes
desirable to solve this problem in a general way.
The simple recursive scheme presented below
can be applied to derivatives of any property and
to any order. The only restriction is that in order
to determine the full set of derivatives to a given
order, one must first calculate all derivatives of
lower orders. In practice this is not a problem
since these are available anyway from the ab
initio calculation.

The relationship between dependent and
independent derivatives

Let F denote the (3N)" n’th-order geometrical
derivatives of some molecular property, for ex-
ample the energy or a component of the dipole
moment. Let us assume that we know 3N—m)"*!
appropriately chosen components of F**! and all
components of ). We wish to derive an expres-
sion which allows us to calculate the remaining
(BN)y"*''=(3BN—m)"*' components of F"*) from
the translational and rotational symmetries of
F™. For the sake of simplicity we will assume that
the molecule is non-linear, so that m is equal
to 6.

We denote the translational and rotational co-
ordinates by {Q,, Q,, Q., R,, R,, R,} or collec-
tively by {ri=1,6}. The 3N Cartesian coordi-
nates are denoted by {x,y.,zli=1,N} or
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{¢|i=1,3N}. Using the chain rule for differentia-
tion we obtain

(aF(n)i]ig...i,,/arj) =
3N
2 BF", ;. /3635 1)

k=1
We may write this equation in matrix form
T(6X3N) A(3N) = B(6) )

where the dimensions are indicated in parenthe-
ses and

T,»,( = SCk/Srj 3)
A= aﬂ")i,iz...i,,/atk = F("“)ilizu.i,,k (4)
B, = SF"",I,-}__,-"/Sr,-. 5)

Eqn. (2) relates F"**V to the translational and
rotational derivatives of F™. There is one set of
equations for each component of F®.

Selecting 6 independent Cartesian coordinates,
we may reorder the columns of T so that the first
6 are linearly independent. We may then write
T as

T(6X3N) = [Ty(6X6) T,{6X (3N—6)}] (6)

where Ty, is non-singular. Reordering the rows of
A in the same way

acm = |40 | ™
we find that eqn. (2) may be written as

ToAp + TA, = B 8)
or equivalently

Ap = Tp'(B—T/A)). )

This equation relates 6 dependent derivatives Ap
to 3N—6 independent derivatives A, in a linear
way. The transformation matrix Tp!T, is inde-
pendent of the property and can be calculated
once and for all. It only remains to describe the
calculation of T and B.
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Calculation of the T matrix

The T matrix contains the partial derivatives of
the Cartesian coordinates with respect to the
translational and rotational coordinates. Its ele-
ments may be determined from the expressions

330, = }kj dlax,, (10)
330, = Ek) 3/3y,, @an
330, = % 3/3z,, (12)
3/3R, = % [yi(3/3z,) ~ z,(3/3y,)]. (13)
3/oR, = g [24(3/3x,) — x,(3/32,)], (14)
/3R, = % [x(3/3y,) — yi(3/3x))), (15)

where the summations are over all atoms. The
following columns of T correspond to the coor-
dinates of atom k:

1 0 O
0 1 0
0 0 1
T = 0 -z y (16)
Zk 0 —xk
Y % 0

Note that T depends on the geometry only.

Calculation of the B matrix

To obtain expressions for the elements of B we
first consider the commutators between the par-
tial derivatives with respect to r; and {. From
eqns. (10)—(15) we find that the only non-vanish-
ing commutators are

[8/3R,, 3/3y,] = —3/3z;, 7



[3/3R,, 3/3z;) = 3/dy,, (18)
[3/3R,, 3/dx] = 9/3z, (19)
[3/3R,, 3/3z)] = —d/3x;, (20)
[3/3R,, 3/3x;] = —d/dy;, (21)
[3/3R,, 3/3y;} = dfox;. (22)
We use the notation

[a/3r;, /3L = a;3/3T;; 23)

for a general commutator, where a; is 0, —1, or
+1. Repeated use of this equation gives

n
OF™, i J3r = 20 (@ F™% i iidixon. i)
k=1

+ (3Ff3r)™,, . @

in an obvious notation.

From expression (24) we see that the deriva-
tives of F™ in general contain n+1 terms. For
translations, the first n vanish since the commuta-
tors are zero. For rotations, they are obtained by
rotating one index at a time according to the
commutator relationships (17)-(22) between the
rotational and Cartesian coordinates. The last
term is determined from the translational and
rotational properties of F. For the energy this
term vanishes. For other properties such as the
dipole moment it is non-vanishing and must be
obtained from the translational and rotational
symmetries of that property.

As an illustration, we consider the derivative of
E,,, with respect to rotation about the z axis.
Assuming all coordinates belong to the same
atom we obtain

oF

xyz

/3R, = E, ,, + E,
=-E, +E

xxz

+E,,.+ (3EGR)),,,
(25)

[z,y)z
where the last two terms vanish.
Examples

When A represents the energy gradient f (the
forces on the nuclei), eqn. (9) reduces to
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fp = T5' Tif, (26)

B vanishes since the energy is independent of the
orientation of the molecule. When A corresponds
to the part of the Hessian which is obtained by
differentiating the Cartesian forces f,, f,, and f,
on a single nucleus (i.e., a matrix g consisting of
three columns), Eqn. (9) becomes

go = Tp' (B—Tg) (27)
where B is the matrix [use Eqn. (24)]:
0 0 0
0 0 O
0 0 0
B=1 0 -1 § (28)
£ 0 ~f
~f, f. 0

B vanishes at equilibrium since the gradient f is
zero at this geometry. Expressions (27) and (28)
correspond to those derived by Page et al.! and
later simplified by Lee et al.* There is one set of
eqns. (27) for each atom in the molecule.

The dependent elements of the dipole gradient
may be calculated from a similar set of eqns.
(27).3 The three-column matrix g now contains
the gradients of the dipole components w,, w,
and p,, and B becomes [use eqn. (24)]:

q 0 O

0 g O

1 0 0 ¢
B=| o E (29)

p, 0 —p,

-0 ou 0

where q is the total molecular charge. Eqn. (29)
corresponds to the translational and rotational
sum rules given for example by Fowler and Buck-
ingham.’

The above examples illustrate the simplicity
and usefulness of the technique. Whenever a new
property is considered one only has to set up a
new B matrix based on eqn. (24) and the trans-
lational and rotational symmetries of the proper-
ty in question.
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